Search results for "Second order Hamiltonian system"

showing 4 items of 4 documents

Existence and multiplicity of periodic solutions for second order Hamiltonian systems depending on a parameter

2013

The existence of at least one nontrivial periodic solution for a class of second order Hamiltonian systems depending on a parameter is obtained, under an algebraic condition on the nonlinearity G and without requiring any asymptotic behavior neither at zero nor at infinity. The existence is still deduced in the particular case when G is subquadratic at zero. Finally, two multiplicity results are proved if G, in addition, is required to fulfill some different Ambrosetti-Rabinowitz type superquadratic conditions at infinity. The approach is fully variational. © Heldermann Verlag.

Critical points Periodic solutions Second order hamiltonian systemsPeriodic solutionsPeriodic solutionCritical pointsSecond order hamiltonian systemsCritical point
researchProduct

Periodic solutions for a class of second-order Hamiltonian systems

2005

Multiplicity results for an eigenvalue second-order Hamiltonian system are investigated. Using suitable critical points arguments, the existence of an exactly determined open interval of positive eigenvalues for which the system admits at least three distinct periodic solutions is established. Moreover, when the energy functional related to the Hamiltonian system is not coercive, an existence result of two distinct periodic solutions is given.© 2005 Texas State University - San Marcos.

Second order Hamiltonian systemPeriodic solutioncritical pointslcsh:MathematicsMultiple solutioneigenvalue problemperiodic solutionslcsh:QA1-939Second order Hamiltonian systemsAnalysisCritical pointmultiple solutions.Electronic Journal of Differential Equations
researchProduct

Three periodic solutions for perturbed second order Hamiltonian systems

2009

AbstractIn this paper we study the existence of three distinct solutions for the following problem−u¨+A(t)u=∇F(t,u)+λ∇G(t,u)a.e. in [0,T],u(T)−u(0)=u˙(T)−u˙(0)=0, where λ∈R, T is a real positive number, A:[0,T]→RN×N is a continuous map from the interval [0,T] to the set of N-order symmetric matrices. We propose sufficient conditions only on the potential F. More precisely, we assume that G satisfies only a usual growth condition which allows us to use a variational approach.

Continuous mapPeriodic solutionsApplied MathematicsSecond order equationHamiltonian systemCritical pointCombinatoricssymbols.namesakesymbolsSymmetric matrixHamiltonian (quantum mechanics)Second order Hamiltonian systemsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Multiple solutions of second order Hamiltonian systems

2017

Author(s): Bonanno, G; Livrea, R; Schechter, M | Abstract: The existence and the multiplicity of periodic solutions for a parameter dependent second order Hamiltonian system are established via linking theorems. A monotonicity trick is adopted in order to prove the existence of an open interval of parameters for which the problem under consideration admits at least two non trivial qualified solutions.

Pure mathematicscritical pointsMonotonic functionperiodic solutionsCritical points01 natural sciencesHamiltonian systemCritical pointsecond order Hamiltonian systemsQA1-939Order (group theory)0101 mathematicsMathematicsDiscrete mathematicsSecond order Hamiltonian systems; Periodic solutions; Critical points; Applied MathematicsPeriodic solutionsApplied Mathematics010102 general mathematicsMultiplicity (mathematics)Pure Mathematics010101 applied mathematicsSecond order Hamiltonian systemPeriodic solutionSecond order Hamiltonian systemsParameter dependentOpen intervalMathematics
researchProduct