Search results for "Second order Hamiltonian system"
showing 4 items of 4 documents
Existence and multiplicity of periodic solutions for second order Hamiltonian systems depending on a parameter
2013
The existence of at least one nontrivial periodic solution for a class of second order Hamiltonian systems depending on a parameter is obtained, under an algebraic condition on the nonlinearity G and without requiring any asymptotic behavior neither at zero nor at infinity. The existence is still deduced in the particular case when G is subquadratic at zero. Finally, two multiplicity results are proved if G, in addition, is required to fulfill some different Ambrosetti-Rabinowitz type superquadratic conditions at infinity. The approach is fully variational. © Heldermann Verlag.
Periodic solutions for a class of second-order Hamiltonian systems
2005
Multiplicity results for an eigenvalue second-order Hamiltonian system are investigated. Using suitable critical points arguments, the existence of an exactly determined open interval of positive eigenvalues for which the system admits at least three distinct periodic solutions is established. Moreover, when the energy functional related to the Hamiltonian system is not coercive, an existence result of two distinct periodic solutions is given.© 2005 Texas State University - San Marcos.
Three periodic solutions for perturbed second order Hamiltonian systems
2009
AbstractIn this paper we study the existence of three distinct solutions for the following problem−u¨+A(t)u=∇F(t,u)+λ∇G(t,u)a.e. in [0,T],u(T)−u(0)=u˙(T)−u˙(0)=0, where λ∈R, T is a real positive number, A:[0,T]→RN×N is a continuous map from the interval [0,T] to the set of N-order symmetric matrices. We propose sufficient conditions only on the potential F. More precisely, we assume that G satisfies only a usual growth condition which allows us to use a variational approach.
Multiple solutions of second order Hamiltonian systems
2017
Author(s): Bonanno, G; Livrea, R; Schechter, M | Abstract: The existence and the multiplicity of periodic solutions for a parameter dependent second order Hamiltonian system are established via linking theorems. A monotonicity trick is adopted in order to prove the existence of an open interval of parameters for which the problem under consideration admits at least two non trivial qualified solutions.